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13 Abstract

	

14
	

A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree

15 cover product in the circumpolar taiga-tundra ecotone was performed using high

16 resolution Quickbird imagery. Assessing the VCF's performance near the northern limits

17 of the boreal forest can help quantify the accuracy of the product within this vegetation

18 transition area. The circumpolar region was divided into 7 longitudinal zones and

19 validation sites were selected in areas of varying tree cover where Quickbird imagery is

20 available in Google Earth. Each site was linked to the corresponding VCF pixel and

	

21
	

overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree

22 crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery

23 for 396 sites throughout the circumpolar region and related to the VCF's estimates of

24 canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-

	

25
	

2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level,

26 inter-annual comparisons of VCF estimates of percent canopy cover were linearly related

27 (mean R2 = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and

28 an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-

29 interpreted percent tree crown cover estimates based on dot counts on Quickbird color

30 images by two different interpreters were more variable (R 2 = 0.73, RMSE = 14.8%,
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31 RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal

32 region, 2005 VCF-Quickbird comparisons were linearly related, with an R2 = 0.57, a

33 RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low

34 percent tree cover and anomalous VCF results in Scandinavia. The relationship of the

35 VCF estimates and ground reference indicate to potential users that the VCF’s tree cover

36 values for individual pixels, particularly those below 20% tree cover, may not be precise

37 enough to monitor 500m pixel-level tree cover in the taiga-tundra transition zone.

38

39	 MODIS; validation; tree cover; ecotone; transition; taiga; tundra; circumpolar

40

41 Introduction

42	 Over the next century, estimates of global temperature increases range from 1.8º

43 C to 4.0º C, but this warming will not be distributed evenly around the globe (IPCC

44 2007). The Arctic regions are expected to warm approximately twice as fast, 4 º C to 7º C

45 by 2100, and much of that warming may occur in the autumn and winter months (Serreze

46 & Francis 2006; Hassol 2004). Large changes in high-latitude forest structure and extent

47 are possible and, in fact, have already been documented. For example, in the 1980s and

48	 1990s between 40 º N and 70º N, increases in photosynthetic activity have been linked to

49 changing spring land surface temperatures (Goetz et al. 2005; Zhou et al. 2003;

50 Randerson et al. 1999; Myneni et al. 1997). There is modeled, remotely-sensed, and

51	 field-measured evidence of changes in fire regime, insect infestations, treeline migration,

52	 age class structure and species distribution in northern forests (Soja et al. 2007, Kurz et

53 al. 2007, 2008a,b). Trees may respond to a warming environment by moving northward

54 and upslope, however, southward treeline movements are possible as permafrost melts,
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55	 soils saturate, and bogs and wetlands replace forests (Crawford et al. 2003; Schuur et al.

56 2008). As the northern boundaries of the circumpolar boreal forests become less certain,

57 there is a need to develop remote sensing techniques to monitor changes in the transition

58 zone between the taiga and tundra, forest extent and treeline location as forests respond to

59 the changing climate and disturbance regimes (Frey et al. 2007). The taiga-tundra

60 transition zone is the largest ecotone on earth, stretching over 13,400 km.

61	 The MODIS sensor, part of NASA’s Earth Observation System (EOS) onboard

62 the Terra and Aqua satellites, is designed for moderate-resolution global monitoring of

63 the Earth. The Vegetation Continuous Fields (VCF) product is derived from multiple

64 temporal composites and provides a percent canopy cover value for each 500m pixel.

65 This continuous value (0-100%) is related to the amount of skylight obstructed by tree

66 canopies equal to or greater than 5 meters in height. This percent canopy cover term

67 differs from percent tree crown cover (TCC) measured for the Quickbird imagery (see

68 below), where the latter refers to the sum of the canopy cover and the within-crown

69 skylight (Hansen et al. 2003). This continuous value approach to land cover mapping can

70 be used along with more conventional land cover categorical data to more reliably map

71	 global land covers. The heterogeneous nature of land cover at ecotone boundaries lends

72 itself to the continuous mapping method of the VCF and there have been other efforts to

73 map tree cover in this manner around the world (Cross et al. 1991; Zhu and Evans 1994;

74 Mayaux and Lambin 1997; Tottrup 2007; Heiskanen and Kivinen 2008).

75	 We validated the accuracy of this product within the taiga-tundra transition zone

76 using validation sites distributed throughout the circumpolar boreal and taiga-tundra

77 transition zone. We addressed how VCF pixels compare inter-annually and the

78 differences in TCC interpretations from high-resolution optical Quickbird satellite
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79 imagery between different interpreters to assess the variation that is inherent in human

80 estimation of TCC from high-resolution imagery. Finally, we examined comparisons of

81 VCF pixels and visual interpretations from Quickbird imagery.

82

83 Background

	84	 The changing abundance of trees along the taiga-tundra transition zone has been

85 used to monitor shifts in vegetation patterns that may signal a response to human

86 activities and/or climatic changes. Treeline changes occur where temperature changes

87 are most profound and a possible circumpolar trend has been suggested (Esper and

88 Schweingruber 2004). Satellite observations have shown that northern latitudes (Zhou et

89 al. 2003), and specifically the boreal forests (Bunn and Goetz 2006), respond in different

90 ways to changing climate. Because of the variability related to the response of the boreal

	

91	 treeline to climate change, there is a critical need for accurate mapping of land cover and

92 monitoring of changes with consistent monitoring methods (Frey et al. 2007; Esper and

93 Schweingruber 2004). Sun et al. (2004) used a spectral un-mixing method with Landsat

94 data to characterize the transition from taiga to tundra for a forest island in northern

95 Russia. Heiskanen and Kivinen (2008) concluded that the use of multi-angular and –

96 temporal data can increase the accuracy of 1km resolution tree cover estimates of the

97 peak growing season in the taiga-tundra ecotone in northern Scandinavia.

	

98	 With a nominal 500m spatial resolution, the VCF product incorporates multi-

	

99	 spectral and -temporal data, capturing phenological differences, to estimate the

100 proportion of canopy cover in each pixel. The VCF resolution may also be suitable for

	

101	 studying ecotone dynamics (Stow et al. 2004). This technique allows for heterogeneous

	

102	 areas to be better represented than is possible by discrete land cover classes.
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103	 Heterogeneous areas, such as the taiga-tundra transition zone, lend themselves to this

104 type of depiction because groups of percent cover pixels can represent gradients across

105	 space. The product is derived from a regression tree that interprets the biophysical

106 relationship between the satellite spectral signals and vegetation cover throughout a

107	 season and a linear regression model that helps improve the regression tree’s predicted

108 values (Hansen et al. 2002b). The VCF algorithm is kept constant for each year’s data,

109 so robust MODIS data processing is a key factor in the year-to-year consistency of the

110 VCF. Furthermore, this method of statistically estimating sub-pixel tree cover at global

111	 scales is necessary because individual trees cannot be resolved by the sensors required for

112	 regional and global level satellite monitoring (Rees et al. 2002).

113	 MODIS data products have been validated at a sub-regional scale by using

114 previously collected field data or higher resolution image data extending across the study

115	 area (Pisek and Chen 2007; White et al. 2005; Hansen et al. 2002a; Hansen et al. 2003).

116 White et al. (2005) used 3954 plots from two independent datasets to test the VCF

117 correlation with ground measurements of tree cover in the southwestern United States.

118 They found an overall negative bias, whereby VCF underestimated tree cover (31% and

119 24% overall for the two datasets) and the RMSE generally increased with increasing tree

120 cover. The authors advised using the Version 1 VCF with caution in this part of the

121	 world. However, as this version has been superseded with subsequent versions, with

122 consequent changes to the algorithm, the relationship of ground data to VCF values for

123	 this area should be reassessed using the most currect product. Hansen et al. (2002a)

124 performed a validation of an early VCF version in Zambia using high resolution

125 IKONOS and Landsat data. After classifying the higher resolution imagery and scaling

126 up to MODIS resolutions, the RMSE was 5.2%. The two different levels of validation
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127	 success revealed by these studies indicate that the VCF’s ability to reliably estimate

128 percent canopy cover may vary greatly depending on factors such as ecoregion and

129 latitude. In northern Finland, Heiskanen (2008) compared the VCF with other global

130 scale map products, finding that the VCF overestimates values in low tree cover and

131	 underestimates values in high tree cover. The author also noted the difficulty in mapping

132 tree cover in the taiga-tundra transition zone and the difficulty of obtaining field data.

133	 There have also been validations of MODIS land products at the pixel level. Liu

134 and Mishchenko (2008) compared measurements of aerosol optical thickness from

135 MODIS and MISR for collocated pixels. Morisette et al. (2003) discussed the use of

136 IKONOS and Landsat ETM+ for exploring variation within a MODIS pixel.

137 Salomonson et al. (2006) compared percent snow cover within individual MODIS 500m

138 pixels to the percentage of Landsat ETM+ derived snow cover for corresponding grid

139 cells. Hall et al. (2008) examined MODIS level 2 land surface temperature (LST) pixels

140 in the sinusoidal grid with LST values derived from Landsat ETM+ and ASTER of the

141 same area. The LST values from MODIS pixels were also compared with automatic

142 weather station data at high latitudes (Greenland). The authors found that single weather

143 station point observations of temperature could not be reliably compared with 1km

144 MODIS, 90m ASTER, or 57m ETM+ pixels because the point measurements don’t

145 represent the variation of temperature across the area covered by each pixel. The authors

146 suggested that a local array over areas corresponding to pixels used in the comparison

147 would appropriately characterize the internal heterogeneity of surface temperature within

148 a pixel. The latter two studies used regression to relate the MODIS product values in

149	 high latitudes to the ground reference data at the pixel level.
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150	 In place of on-site validation, some studies have acquired ground reference from

151 high-resolution imagery displayed in Google Earth (GE). Using the Quickbird imagery

152 in GE, measurements have been made of river channels and oxbow lakes (Constantine

153 and Dunne 2008) as well as irrigated areas (Thenkabail et al. 2008). Luedeling and

154 Buerkert (2008) visually interpreted GE’s high-resolution data in areas randomly

155	 distributed across a study area to validate a Landsat-based classification of desert oases in

156 Oman. In this study, we use GE’s archive of Quickbird imagery to validate the MODIS

157 VCF product for northern boreal forests. These Quickbird images in GE cannot be

158 spectrally enhanced nor can band combinations be reconfigured. The imagery is

159 displayed in true-color and the near infrared channel cannot be accessed, which reduces

160 the information content available to image interpreters. There is, however, some basic

161	 image information metadata accessible through the “DigitalGlobe Coverage” sub-layer

162 under the pre-packaged “More” layer contained in the GE “Primary Database.”

163 Activating this information reveals an icon at the center point of each Quickbird image

164 that links to a web thumbnail version of the image along with the Catalog ID number,

165	 acquisition date, latitude and longitude of the image center, off nadir angle, target

166 azimuth, cloud cover, and environmental quality.

167

168 Methods

169 Identifying validation sites in Google Earth

170	 We selected sites throughout the circumpolar boreal forest that included a range

171 of percent TCC for which there was high resolution, true-color Quickbird imagery

172 available in GE. Only images with resolutions that allowed interpreters to identify

173 individual tree crowns were considered in the selection process and the majority of
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174 images were acquired from May-September. To ensure that our sites were well

175 distributed throughout the circumpolar northern boreal region, we divided Eurasia above

176 60º N into 4 regions and North America above 55 º N into 3 regions and selected

177 approximately 60 validation sites for each of these seven zones (Figure 1). The

178 validation sites extended southward to 55 º N in North America to include the taiga-

179 tundra transition zone of eastern Canada, where biophysical characteristics in this region

180 begin to limit tree growth at this latitude. The southern limits of study sites in both

181 Eurasia and North America were chosen based on information from various

182	 interpretations of treeline, ensuring that these limits allowed us to consider tree cover

183 within the transition zone from boreal forest to tundra (Timoney et al. 1992, Callaghan et

184 al. 2002a, Olsen et al. 2001). The seven circumpolar regions include: Scandinavia,

185 Western Eurasia, Central Eurasia, Eastern Eurasia, Alaska, Central/Western Canada, and

186	 Eastern Canada. In each zone, at least 20 test sites were identified in the boreal forest in

187 each of three TCC categories: 0-20%, 20-60%, 60-100%. In a given region, we selected

188 every point based on (1) the availability of high-resolution (2.44m at nadir) Quickbird

189 imagery in GE, (2) our initial, quick-look, visual assessment/estimate of percent TCC

190 category (i.e., 0-20%, etc), and (3) on landscape/forest homogeneity surrounding the

191 location (approximates a 3x3 MODIS 500m pixel window size). This third criterion was

192 introduced to try to mitigate mis-registration errors between the GE imagery and the

193 MODIS VCF pixels. The percent canopy cover values of the corresponding local VCF

194 pixels were not considered during this site selection process.

195	 Sites were located at least 15 km apart to spread the VCF evaluation pixels across

196 a given zone and to introduce spatial independence into the site selection process. We
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197	 selected 431 sites (7 zones x 3 TCC classes x 20 locations + 11 additional unique/unusual

198	 sites).

199
200 MODIS VCF Mosaics

201 We obtained the latest VCF data, downloaded by MODIS tile, through the

202 University of Maryland’s Global	 Land Cover Facility

203	 (ftp://ftp.glcf.umiacs.umd.edu/modis/VCF) . The Collection 4 version of the data used for

204 this validation was collected for MODIS tile rows 2 and 3. Tile row 1 (above 70 º N) was

205	 not available at the time of the analysis. Tile mosaics in the native sinusoidal projection

206 for North America and Eurasia were created using the MODIS Reprojection Tool version

207 4.0 from the Land Processes Distributed Active Archive Center (http://lpdaac.usgs.gov ).

208 Horizontal tiles 9-14 were used for North America and tiles 18-26 for Eurasia (Figure 2).

209 While each MODIS pixel is nominally 500m X 500m, they are in fact 463m on either

210	 side in the original sinusoidal projection. This detail is important for generating precise

211 TCC sampling grids.

212

213 Matching validation sites, VCFpixels and Google Earth imagery

214	 The comparison of percent TCC estimates from Quickbird imagery in GE to

215 MODIS VCF pixel values of percent canopy cover requires accurately matching the VCF

216 pixels with their corresponding spatial locations in GE to the extent possible given

217 MODIS geo-location error limits. The VCF pixel whose centroid was closest to each

218 location selected in GE was identified and the boundary of each pixel, geo-located

219 according to the four corners, was overlaid on the GE imagery. We then generated

220 regular 10 X 10 dot grids for each VCF pixel such that each dot represented the center of

221 an area that was one-tenth the length and width of the VCF pixel. The boundaries of the
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222 selected pixels for each of the 7 circumpolar zones along with the regular dot grids were

223 then converted to Keyhole Markup Language (KML) files and displayed in GE. Since

224 the MODIS data was in its native sinusoidal (equal area) projection with an accuracy of

225 50m (1) (Wolfe et al. 2002), the VCF pixel boundaries displayed in GE and associated

226 dot grids did not maintain the square shape of a gridded cell, but preserved the areal

227 coverage, location and extent that the pixel represented (see Figure 3). We note that the

228 sinusoidal projection does not increase inaccuracy beyond the geo-location accuracy

229	 stated above.

230

231 Estimating percent tree cover

232	 Five interpreters systematically viewed a subset of the validation sites, counting

233 the number of dots that lay atop tree crowns. Prior to the image interpretation,

234 interpreters collectively reviewed test sites composed of a range of TCC densities and

235	 types at various latitudes and various regions in order to standardize interpretations of

236 tree cover. The interpreters counted dots, for each assigned VCF pixel, lying atop tree

237 crowns to provide an estimate of percent TCC. The following guidelines were used to

238 determine if a dot lay atop a tree crown:

239	 1. The entire dot must intercept a tree crown. As each dot represents an

240	 infinitesimally small point on the earth, i.e. it has no area, increasing the

241	 scale (zooming in) reveals the placement of the dot in relation to tree

242	 crown pixels. Note: Increasing the scale will not alone determine whether

243	 a dot intercepts a tree crown, because the context of surrounding pixels is

244	 needed to identify features.
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245	 2. The feature beneath a dot had to be distinguished from shrubs. The two

246	 central indications of tree crown presence were:

247	 a. the shape of the crown, and

248	 b. the presence of a shadow.

249	 In cases of continuous dense tree cover, where shadows and shape did not help

250 identify individual trees, the broader spatial context and texture of the forest patch and

251	 local landscape patterns helped to determine whether a dot intercepted a tree crown or a

252	 shrub.

253	 The VCF product measures percent canopy cover, where canopy cover is defined

254 as the component of TCC that obstructs skylight (Hansen et al. 2003). Percent TCC was

255 interpreted, rather than percent canopy cover, because our validation approach relied on

256 Quickbird imagery where canopy cover and within-crown gaps could not be

257	 distinguished. From an interpreter’s perspective, TCC is the metric that can be visually

258	 estimated.

259	 Each site was attributed a value based on an interpreter’s count/estimate of tree/no

260 tree for each of the 100 dots regularly arranged within a VCF pixel’s boundary. Each

261	 site’s value was then associated with the corresponding values of VCF pixels for years

262 2000-2005. This data set allowed us to examine the consistency of the VCF from one

263	 year to the next. Furthermore, 58 of the 396 sites were systematically selected for

264 replicate image-interpretations by two of the five image-interpreters. This re-

265 examination of 15% of the sample allowed us to investigate the variability among the five

266 image interpreters. Interpretations of percent TCC were made for 424 of the 431 sites

267 because seven sites were judged, after examining the imagery, to be too difficult to

268 confidently discern trees from shrubs, i.e., the images were either too dark or too blurry
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269 to permit accurate estimation of TCC. Quickbird – VCF regressions were based on 396

270 sites since there were no Collection 4 VCF values for 28 sites above 70° N. Sites for

271 which multiple interpretations of tree cover differed by more than 30 percentage points

272 were examined to investigate and resolve the differences in the tree cover estimates. In

273	 these instances, the interpreters involved discussed the scene, and interpretations were

274 redone to better standardize image-interpreted estimates. A reduced major axis (RMA)

275 regression was used to compare a later VCF year’s data with an earlier year’s, and one

276 interpreter’s TCC estimates to another’s. The RMA regression is appropriate for

277 comparing 2 year’s of VCF data and 2 interpreter’s estimates of TCC because there are

278 similar amounts of error in data on both axis, i.e., in both X and Y (Curran and Hay

279	 1986).

280

281	 Results

282 Inter Annual Comparisons

283	 Figure 4 reports the slopes of the simple linear regression lines relating Quickbird

284 estimates to VCF estimates for each zone for 2000-2005. While there are differences

285 between longitudinal zones, most slopes (64%) are between 0.4 and 0.6 and all slopes for

286 all zones were less than 1 reflecting the varying relationship of Quickbird image-

287 interpreted estimates and VCF values at the low and high ends of the canopy cover range.

288 This relationship is examined in subsequent figures. Results for Scandinavia report

289 regressions with low slope values throughout the study time period. Visual examination

290 of the data in this region reveals what may be some systematic processing bias in that

291 VCF canopy cover values show an abrupt change in northern Scandinavia that are not

292	 indicative of natural patterns or land use.
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293	 We compared the VCF canopy cover values with the Quickbird TCC

294	 interpretations at the 396 validation sites. Figure 5 shows the distribution of each

295 Collection 4 VCF dataset from 2000-2005 with the validation site estimates using an

296 amalgam of cloud-free data (2002-2008) from the Quickbird satellite. This provides

297 information on the variability of the VCF from 2000-2005, as the appearance of each

298 frequency distribution plot helps to explain the consistency of the VCF and where there

299 may be systematic differences from ground-truth validation. To generate Figure 5, each

300 of the yearly VCF estimates and the image-interpreted estimates of percent TCC were

301	 assigned to a 10% bin (e.g., 0-10%, 11-20%,... 91-100%) and a count made. The

302 majority of VCF pixels at the 396 sites report canopy cover values between 20 and 60%.

303 While the difference between iterations of the VCF is minimal in this range, they are

304 distinctly higher than the image-interpreted estimates of percent TCC. A Kolmogorov-

305 Smirnov Test for two independent samples was performed to compare the distributions of

306 the earliest and latest (2000 and 2005) VCF data and confirmed that the differences in

307 these yearly VCF distributions are in fact not significantly different (p = 0.939). The

308 distributions of the image-interpreted estimates and the 2005 VCF data were tested in the

309 same manner, confirming a significant statistical difference (p < 0.001). The frequency

310 distributions of each yearly VCF estimate suggest that the VCF tends to underestimate

311 canopy cover in areas where Quickbird reports TCC < 20% and overestimates in areas

312 where Quickbird reports TCC > 20%. In addition, this figure shows that there are no

313 VCF values above 80% canopy cover (discussed in a subsequent section).

314	 We also examined VCF inter-annual variability with regression in order to

315 characterize the precision of the VCF product. Figure 6 shows the inter-annual variation

316 on a pixel-by-pixel basis for 403 circumpolar ground sites for each combination of VCF
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317 years (2000-2005). This set of regressions explains the relationship of all VCF estimates

318	 available to date for 403 sites. In interpreting the regressions in Figure 6, we assume that

319 from 2000-2005 actual canopy cover changes little at the each site, though certainly

320 forest disturbances, such as fire, could alter the canopy cover in this time period. Simple

321	 t-tests indicate that most slopes are not significantly different from 1.0 and most

322	 intercepts are not significantly different from zero (Table 1). At the pixel level, the inter-

323 annual scatter, 2004 to 2005, amounted to RMSE < 10% and RMSD = 7%, though the

324 greatest range discrepancy across all sites was 38% (61% in 2005 with 23% in 2004 and

325 47% in 2005 with 9% in 2004). The inter-annual scatter for all combinations of years

326 ranged from a RMSE = 9.5 to 10.8% and a RMSD = 6.8 to 7.8%.

327

328 Variability of Quickbird TCC Interpretations

329	 Figure 7 presents the variation inherent among Quickbird image interpreters.

330 Different pairs of interpreters estimated %TCC on 58 of the 396 validation sites to

331	 quantify the variability associated with our image-interpreted tree counts. The VCF

332 product (Figure 6) is less variable, i.e., more stable (average RMSE = 10.1%, average

333 RMSD = 7.3%) than the Quickbird image-interpreted estimates (RMSE = 14.8%, RMSD

334 = 18.7%) which serve as our ground reference data product. There were 15 estimates for

335 which at least a 30 percentage point difference in tree cover interpretation occurred. The

336 majority (12) of these involved shrub/tree confusion by one of the interpreters. These

337 estimates were re-done after interpreters re-calibrated their understanding of tree cover

338	 appearance for these sites, to further standardize ground reference.

339
340 Percent Tree Crown Cover by Circumpolar Zone
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341	 Using the most recent (2005) version of the Collection 4 VCF, we correlated the

342 observed Quickbird percent TCC values with the percent canopy cover estimates of the

343 VCF for each of the 7 zones and for all zones combined (Figure 8). Table 2 summarizes

344 the simple linear regression results for each of the plots in Figure 8. Each zone had a

345 minimum of 45 validation sites. The scatter varies for each zone, with no apparent bias

346 towards any percent TCC interval. Some of the more inconsistent data points were

347 investigated and found in some cases to be at the boundary of an abrupt change in VCF

348 percent canopy cover or in an area where shrub cover had a tone and texture similar to

349 that of nearby stands of trees. Tests confirmed that all slopes were different than 1 and

350 all Y-intercepts were different than 0 (Table 2). The Scandinavian sites had a slope that

351	 was significantly different than the slope for all zones combined (p < 0.001).

352	 We note the following in Table 2 and Figure 8: (1) an upper VCF bound of 80%

353	 in all graphs in Figure 8 (also apparent in Figure 6), (2) a consistently positive y-intercept

354 significantly different from zero in all zones, and (3) RMSE values ranging from ~10-

355 15% and RMSD values ranging from ~ 14–23% (with the exception of Scandinavia).

356 The 80% upper VCF limit noted in Figures 6 and 8 in both North America and Eurasia is

357 consistent with other reports on the VCF product (White et al. 2005; Mark Carroll,

358 personal communication). Hansen et al. (2003) explains that this 80% upper VCF limit is

359 due to the relationship between TCC and canopy cover. On average, 80% canopy cover

360 corresponds to complete crown cover. However, we might expect the canopy cover to

361 TCC ratio to vary depending on the different crown cover densities of the dominant tree

362	 types across regions.

363	 For low percent TCC values, the y-intercepts show a range from about 11% to

364 nearly 25%, indicating the VCF’s tendency to overestimate crown cover in areas that are
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365 more lightly forested. The consistent, positive y-intercepts may indicate some tendency

366 of the VCF to confuse tall shrubs as trees. Certainly the Quickbird image interpreters had

367 this same problem, and a considerable amount of time was spent by the interpreters trying

368 to discern and define the difference between shrubs and trees in some of the imagery.

369 However, where the 2005 VCF values were less than 20% canopy cover (49 sites), 73%

370 of the Quickbird estimates were also less than 20 (36 sites) and only 7 of the remaining

371	 13 fell outside the RMSE range (14%). This indicates that while the VCF may err in

372 areas where trees are scarce and shrubs are abundant, the Quickbird estimates tend to

373 confirm the VCF low percent canopy cover values.

374	 The entire circumpolar region had an overall RMSE and RMSD of 13.4% and

375 21.3%, respectively. We view the zonal and circumpolar RMSE and RMSD values

376 reported in Table 2 and Figure 8 as worst-case estimates given that some unknown

377 portion of this error term is due to variation associated with the image-interpretation

378 results. This 13.4% RMSE is lower than the values reported by White et al. (2005) for

379 the southwestern United States (24% and 31%) and higher than the values reported in

380 Hansen et al. (2002a) for Zambia (5.2%).

381

382 Limitations and Uncertainties

383

384	 It is helpful to understand the spatial and temporal context in which our ground

385 reference was gathered and the VCF produced. Limitations to, and uncertainties in,

386 accurately assessing tree cover at a given location may stem from the method of

387	 collecting ground reference, satellite data geo-location/gridding, and the timing of

388 satellite data for compiling both the ground reference and the VCF data product.
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389	 The variability in Figure 7 indicates the ease with which similar estimates will be

390 repeated and the inherent difficulty of remote satellite and visual estimation of percent

391	 canopy cover and TCC. Although standardization protocols were established prior to the

392 validation effort, there were a number of cases in which the five interpreters differed in

393	 their interpretation of tree cover. The replicated site interpretations of percent TCC were

394 done by five interpreters, which likely increased the level of disagreement between site

395	 interpretations than if sites had been re-interpreted by the same interpreter. Thus, the

396 overall uncertainty in ground reference is not surprising. The similar image tone and

397 texture of trees and shrubs combine with different interpretations of these features by five

398 interpreters to create noisy validation data. The purpose of re-examining those replicated

399 sites that differed by at least 30 points was to minimize differences based on strong

400 interpreter bias where an errant interpretation of tree cover could dramatically effect

401	 overall interpreter precision. A lower threshold would have allowed for examination of

402 smaller discrepancies and refinement of a greater number of the replicated estimates,

403	 resulting in a higher level of consistency.

404	 We chose this conservative threshold so as not to disguise the true noisy nature of

405 the ground reference. The level of variability in the ground reference makes it difficult to

406 pinpoint the extent to which the VCF estimates of low canopy cover, in the transition

407 zone and throughout the boreal forest, vary from true tree cover. However, the overall

408 RMSE and RMSD (13.4% and 21.3% respectively) are evidence that below 20% VCF

409 canopy cover the ability of the product to provide reliable 500m pixel-level delineation of

410 the circumpolar taiga-tundra transition zone is limited.

411	 The accuracy of the MODIS VCF product may also introduce discrepancies

412 between VCF percent canopy cover values and interpreted percent TCC. MODIS’ sub-

17



413 pixel geo-location accuracy (at nadir) may contribute some positional inaccuracies, as

414 will Quickbird’s geo-location accuracy (+/- 23m, CE90%), and we also note that the

415 gridding of some observations could also contribute to disagreement between

416 interpretations of percent TCC and VCF values. Heiskanen and Kivenen (2008) indicate

417 that per-pixel comparison of reference data with gridded MODIS Level 1B data is

418 complicated by the fact that some gridded values represent different areas on the ground

419 than do the original satellite observations from which the gridded values were derived.

420 This is due to the MODIS bow-tie effect (Gomez-Landesa et al. 2004, Tan et al. 2006)

421 whereby observations further from nadir account for a larger land surface area than those

422	 observations at nadir. Tan et al. (2006) also explain that the surface area contributing to a

423 MODIS observation is always larger than the grid cell because of the triangular point-

424 spread function. MODIS Level 3 products, such as the VCF, are multi-temporal

425 composites of the best Level 1B data available for a given location within a time interval.

426 Factors such as proximity to nadir and aerosol contamination contribute to the selection

427 of the data that will best describe ground features. Higher latitudes will have increasingly

428 more nadir and near-nadir pixels available for incorporation into a Level 3 data because

429 of the increasing degree of scan line overlap toward the poles, and more opportunities for

430 larger overlap between satellite observations and the grid cells into which they are

431 mapped (Robert Wolfe, personal communication).

432	 Figure 9 shows a lake outline and one pixel’s corners in northern Alaska (68.9N,

433 151.3W) overlaying both MODIS and Landsat TM from 6/14/2008 and Google Earth

434 basemap data. This example demonstrates that (1) MODIS Level 3 grid cells overlay the

435	 correct earth features irrespective of the projection in which they are cast, (2) there is no

436	 apparent geo-location degradation at high latitudes, and (3) features maintain their spatial
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437 arrangement when displayed in Google Earth. The regular 10x10 dot grids, constrained

438 by VCF grid cells, provide a way of estimating TCC in an area with which the boundaries

439 are presumed to correspond. Each dot is used to represent an area that is 1/10 the area of

440 a MODIS pixel. The 100 regularly arranged dots within the boundary of each site’s

441	 corresponding pixel provide point-based estimates of areal values of TCC, while the

442 pixels themselves are geo-located approximations of the actual land surface that provided

443 the radiance values recorded by the satellite. This method, recommended by Hall et al.

444 (2008), provides an intuitive and easily replicated means of performing pixel-level

445 validation, and assessing sub-pixel variability, of MODIS Level 3 geophysical maps.

446	 While our Quickbird TCC interpretations are not the definitive assessment of tree

447 cover at the 396 sites, they represent our best estimates. We did not examine how the

448 differences in acquisition time between the Quickbird and MODIS VCF imagery may

449 have increased variability between the two estimation methods. However (1) the VCF is

450 a temporal composite designed to minimize sensitivity to a specific time of year, (2) we

451 gave preference to Quickbird imagery obtained from May to September when ground

452 features aren’t obscured by long shadows from low sun angles, and (3) the vast majority

453 of sites were dominated by conifers whose crowns are visible regardless of season.

454	 Cases where forest disturbance occurs between the acquisitions of each data

455 source could contribute to variability of our ground reference with MODIS estimates.

456 One case involves a forest disturbance at a validation site after the 2005 MODIS data and

457 prior to a Quickbird acquisition used for ground reference. For example, a disturbance

458 after the 2005 VCF dataset but prior to the acquisition of a Quickbird image used to

459 select a site could affect forest cover that the VCF had already mapped. Depending on

460 the nature of the disturbance, the ground reference and MODIS estimates could be based
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461	 on significantly different forest conditions. Our ground reference sites were chosen in

462 GE with Quickbird imagery where there were relatively homogenous forest conditions

463	 and no visual signs of recent disturbances. This site selection method was a screening

464 process, decreasing the likelihood of validating mixed MODIS pixels and changed pixels.

465 A second case may occur if a site selected using a 2002 Quickbird acquisition

466 experienced a subsequent tree cover altering disturbance prior to the 2005 VCF. Such

467 cases will introduce noise into the relationship of the VCF to the ground reference

468 estimates. Regarding the likelihood of a burn at one of our validation sites, Hicke et al.

469 2003 indicate that 1% of the North American boreal forest biome may burn each year.

470 SPOT-VEGETATION estimates of boreal forest fire indicate that about 1% of the

471	 circumpolar boreal burned from 2000-2004 (Bartalev et al. 2007). Similarly, Potapov et

472 al. (2008) estimated that approximately 1% of the area of forest cover loss in the boreal

473 biome was due to wildfire from 2001-2005, while forest cover loss as a percent of year

474 2000 forest area was 5.63% for North America.

475

476 Discussion

477	 This validation helps establish the limits of the VCF for mapping the taiga-tundra

478 ecotone on a global scale. The accuracy and precision of global products such as the

479 VCF must be assessed to determine their utility for detecting subtle changes to the taiga-

480 tundra ecotone.

481	 A comparison of VCF-to-VCF variability and interpreter-to-interpreter variability

482 provided an unexpected result. We note the following: (1) each inter-annual VCF percent

483 crown cover RMSE (9.5 – 10.8%) and RMSD value (6.8 – 7.8%) was smaller than the

484 image-interpreters' percent TCC RMSE (14.8%) and RMSD (18.7%) and (2) each inter-

485 annual VCF R2 value (0.74 – 0.80) was higher than the interpreter R2 (0.73). In the
20



486 majority of cases, slopes were not significantly different from 1 and intercepts were not

487 significantly different from zero, however the results, specifically the RMSE and RMSD

488 values, point out the difficulty of working in short-stature, open forests interspersed with

489 shrubs of varying heights, both for image-interpreters and for analysts generating

490 machine-processed standard products. In the ideal case of perfect, completely

491 reproducible estimates of tree canopy cover from Quickbird, then we would expect the

492 VCF-interpreter comparisons to have higher R2 values and smaller RMSE and RMSD

493	 values. Interpreters were themselves quite variable, and that variability, which has no

494 bearing on the quality of the VCF estimates, is manifested in the comparison.

495	 Google Earth saved money and time by providing free high-resolution imagery

496 across tens of thousands of kilometers of inhospitable, inaccessible terrain. However, the

497 use of GE imagery comes at a cost. Some key factors that affected the interpretation of

498 tree cover were the inability to manipulate or enhance Quickbird imagery in GE, the

499 combination of view and high-latitude sun angle and the similar appearance of trees and

500 shrubs. The Quickbird data’s near-infrared channel is unavailable in GE, removing a

501 potentially valuable tool for interpreting vegetation on screen. The GE imagery also

502 lacks the ability to perform contrast enhancements. Additionally, in some instances the

503 combination of the arrangement of forest patches and tree shadows with certain sun and

504 view angles may have obscured tree cover, or led to false identification of tree cover.

505 Regional differences in tree and shrub types and appearance may have, in some cases,

506	 affected tree cover estimates.

507	 The VCF is a MODIS satellite map of a geophysical variable (tree canopy cover).

508 The pixels of this map have attribute and geo-location information and are intended to be

509 used along with other geographically referenced spatial data. Thus, the pixel locations

21



510 are presumed to represent those earth features with matching geo-location. It is for this

511	 reason that pixel-level validation is useful, even with the variety of documented

512	 uncertainties from the input satellite data, as it provides users, who will relate these pixels

513 to other spatial data, with a fundamental understanding of the accuracy of the product at

514	 its finest resolution.

515

516 Implications for Future Work: Mapping Tree Cover Changes at the Taiga-Tundra

517 Ecotone

518	 Callaghan et al. (2002a) reviewed the global importance of the taiga-tundra

519 boundary. They highlight the difficulties in understanding and representing the location

520 of this transition zone and in how to monitor its fluctuations. Although there are a number

521	 of characteristics that aid delineation of this boundary, such as tree growth form, height,

522 age and aggregation, the distribution of trees is probably the most logical way of

523	 presenting the regional transition from trees to tundra (Callaghan et al. 2002b). Rees et

524 al. (2002) discussed the importance of spatial resolution on the definition of treeline.

525 Stow et al. (2004) acknowledge the need for multi-scale mapping of vegetation

526	 variability in the northern latitudes. Mapping the distribution of trees along the taiga-

527 tundra boundary in the circumpolar Arctic will be mostly at continental to global scales

528 but must also account for finer scale patterns that reveal gradual transitions. Examining

529 the heterogeneity of groups of 500m VCF pixels may help identify forest patches and

530 gaps (i.e., areas of similar tree distribution). Identifying landscape components formed

531 by groups of similar, adjacent pixels at a few scales establishes a foundation on which to

532 apply clear rules and definitions of ecotone location and extent. This process uses the

533	 spatial context in which individual pixels exist (the values of surrounding pixels) to
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534 reduce the data volume while advancing understanding of landscape patterns and

535 components. The performance of the VCF at the pixel level is important for

536 understanding the fundamental association of the predicted data with observed data. This

537 pixel-level approach assesses the VCF’s utility for regional tree cover mapping in the

538 taiga-tundra transition zone. The patterns that these pixels reveal can help form the basis

539 of the dataset that can be observed and analyzed for change through time.

540	 McMahon et al. (2004) discussed a robust basis for mapping ecological regions

541 and established a framework for both identifying and mapping ecoregions. This

542 framework involves identifying an extent, a grain/resolution, and a scale for the area

543 being examined and accounts for how the heterogeneity of conditions affects the

544 delineation of a boundary. The forest gaps and patches that form the spatial patterns of

545 the taiga-tundra ecotone represent internal heterogeneity that is difficult to capture on a

546 continental-global scale map. The continuous tree cover mapping provided by the VCF

547 product allows groups of pixels that represent patches and gaps to have attributes

548 representing internal variability that capture the gradual nature of the boundary. The

549 spatial variability, or texture, of the VCF product along with ancillary data may produce

550 maps that replicate forest cover variability in a way that discrete land cover classification

551	 cannot, and may facilitate closer monitoring of subtle changes in the ecotone. In fact,

552 according to Hansen et al. (2002b), the VCF was developed because continuous classes

553	 can represent the spatial heterogeneity better than fixed land cover classes, particularly in

554	 land cover transition zones.

555	 Given the inter-annual scatter noted between individual VCF observations, we

556 suggest that the taiga-tundra ecotone may be more reliably delineated and monitored over

557 time by considering groups of VCF observations rather than individual pixels. In this

23



558 scenario, any number of grouping algorithms – clustering processors, decision-tree

559 classifiers, image segmentations – could be used to identify VCF pixels with similar

560 canopy cover attributes. The mean and variance of the grouped pixels might then be used

561	 to define a band of canopy cover conditions that represents the taiga-tundra transition

562 zone. Such an approach, one that groups adjacent pixels based on a defined level of

563	 similarity, may mitigate spurious canopy cover error caused by VCF variability at the

564	 pixel level.

565	 To further improve the VCF product for work in northern regions, we provide the

566 following recommendations for subsequent iterations of the VCF products:

567	 1.	 The addition of a water mask, which was available in the Collection 3

568	 version, would be useful particularly for northern latitudes where low

569	 tree cover and water bodies can be difficult to distinguish without

570	 water-coded pixels.

571	 2.	 Completion of the Collection 4 VCF tiles above 70° N would be

572	 helpful for tracking changes at the northern edge of the taiga-tundra

573	 transition zone, particularly in the lowlands just north of the Siberian

574	 Trappes (Taimyr-Central Siberian tundra ecoregion) in Russia and at

575	 the northern tip of Scandinavia (Scandinavian Montane Birch forest

576	 and grasslands ecoregion) (UNEP/GRID-Arendal 2007).

577	 3.	 Continued refinement of the VCF algorithm for low percent canopy

578	 cover areas.

579

580 Conclusion
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581	 Accurate mapping of the taiga-tundra ecotone is important for monitoring subtle

582 changes at the northern limits of the boreal forest. Documenting tree cover in this region

583 using satellite-derived maps provides a means to continually assess changes in the

584 transition between forest and tundra. The results of this study indicate the VCF’s

585	 potential utility for the circumpolar taiga-tundra region and limitations inherent in its use,

586 highlighted by its tendency to overestimate percent canopy cover in sparsely forested

587 areas of the circumpolar taiga-tundra transition zone. This overestimation demonstrates

588 to potential users of the VCF maps that this product may not be suitable for detailed

589 mapping and monitoring of tree cover, particularly tree cover below 20%, at the

590 product’s finest (500m pixel) level of detail.

591
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Figure 1 Validation sites by zone in Eurasia and North America.
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822

819

820 Figure 2 Areas (in light blue) of MODIS tiles within which Quickbird imagery validation

821	 sites were selected.

823 Figure 3 An example of a VCF validation site in eastern Canada. The marker in the

824 lower right specifies the exact site selected using true-color Quickbird imagery in GE

825 with fixed enhancement. The red box represents the boundary of the corresponding VCF

826 pixel in the sinusoidal projection. The yellow dots mark the location of the 100 points

827 used to estimate %TCC. For this site, interpreters observed 23% TCC (i.e., 23 of 100

828 yellow dots fall on a tree crown) and the VCF estimated 25% canopy cover. Image
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829 metadata was accessed through the “DigitalGlobe Coverage” layer in GE to provide

830 background information that in some cases aided interpretation of tree cover.
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832 Figure 4 Slopes of the regression line between VCF values and Quickbird estimates of

833 percent TCC for each year of the Collection 4 VCF data. The slopes for Scandinavia

834 may indicate a possible systematic bias in VCF processing for that area.
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837 Figure 5 Frequency distribution of percent TCC from Quickbird or percent canopy cover

838 from the VCF for 396 circumpolar boreal sites. The numbers along the X-axis denote the

839 bin maximum values. The Quickbird estimates report percent tree crown cover while the

840 VCF maps percent tree canopy cover.
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846 Figure 6 Plots of all VCF inter-annual combinations using RMA regression to

847 demonstrate the variability inherent within the VCF. Each observation represents the

848 value of each year’s VCF data at a validation site (n = 403). For each plot, the earlier

849 year is shown on the x-axis, with all subsequent years plotted on the y-axis.
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850 Table 1 Summary of VCF RMA regression results showing Y-intercept (top row), slope

851 (second row), RMSE and RMSD (third row), and R2 values (bottom row) for all VCF

852	 inter-annual combinations (2000-2005) at 403 sites. P-values for tests of Y-intercept ≠ 0

853	 and slope ≠ 1 are shown in italics adjacent to their corresponding regression coefficients.

854 Significant differences shown in bold (p<0.05).

855

Y-intercept

2000 slope
RMSEIRMSD
R2

2001

2002

2003

2004

0.42 0.697 -0.65 0.566 1.89 0.082 -0.93 0.362 1.27 0.213
1.01 0.647 1.03 0.247 0.98 0.408 1.00 0.900 1.00 0.883
10.0 7.2 10.4 7.5 10.6 7.6 9.5 6.8 9.5 7.0

0.78 0.77 0.76 0.80 0.80

-- -- -1.07 0.248 1.49 0.159 -1.34 0.219 0.86 0.384

-- -- 1.02 0.454 0.97 0.181 0.99 0.566 0.99 0.549
10.2 7.3 9.9 7.0 10.2 7.3 10.2 7.3
0.78 0.78 0.77 0.77

-- -- -- -- 2.51 0.015 -0.30 0.784 1.90 0.090
-- -- -- -- 0.95 0.035 0.97 0.192 0.97 0.200

10.0 7.1 10.4 7.5 10.8 7.8
0.78 0.76 0.75

-- -- -- -- -- -- -2.85 0.012 -0.65 0.587
-- -- -- -- -- -- 1.02 0.479 1.02 0.514

10.1 7.3 10.7 7.8
0.77 0.74

-- -- -- -- -- -- -- -- 2.20 0.030
-- -- -- -- -- -- -- -- 1.00 0.982
-- -- -- -- -- -- -- -- 9.6 7.0
-- -- -- -- -- -- -- -- 0.79

856
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858

859

35



100 ................^ ..... ^.....
•	 -

90 ..^:: .......

E
m80'

•	 ^••	 •

70

UO 60 .................................................. ^.....	 .............. 	 ........................
0 50
U

•. ...	 .... - - - - - - - - - - - - - - - - - - - - - - -

v
40

•	 • •	 — - 1 to 1 line
30 .................. ........... 	 ........••	 • .... -------------------------•	 y = 1.03x - 1.06

Ae
20 ........	 ..........	

........_ ...................- ------	 ---...	 R2
= 0.73--------•	 •	 • • •	
n = 58

10 ....• ...	 ........................................- ..	 RMSE = 14.8%

RMSD = 18.7%
0

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100

860
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861 Figure 7 RMA regression showing the relationship of replicated TCC interpretations

862 from Quickbird data by different interpreters for selected sites. The difference between

863 the Y-intercept and 0, and the slope and 1 are not significant (p = 0.12 and p = 0.09).
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Figure 8 Simple linear regression showing the relationship of MODIS 2005 VCF percent

canopy cover values with estimated percent TCC values from Quickbird imagery.

Table 2 Summary of simple linear regression values representing the relationship of the

2005 VCF with the observed % TCC values from Quickbird data for each region and all

combined regions.

P-value for Y- P-value for

2005 VCF R2 RMSE RMSD Slope slope ≠ 1 intercept Y-intercept ≠ 0 n

Alaska 0.66 10.9 17.2 0.54 < 0.001 18.6 < 0.001 60
Central/Western

Canada 0.57 14.5 21.1 0.53 < 0.001 24.58 < 0.001 64
Eastern Canada 0.82 9.5 14.4 0.66 < 0.001 10.96 < 0.001 64

Scandinavia 0.38 9.7 28.6 0.27 < 0.001 21.83 < 0.001 58
Western Eurasia 0.65 10.9 21.0 0.47 < 0.001 24.91 < 0.001 59
Central Eurasia 0.66 13.2 22.4 0.54 < 0.001 13.51 < 0.001 45
Eastern Eurasia 0.38 14.4 22.9 0.41 < 0.001 18.37 < 0.001 46

All zones 0.57 13.4 21.3 0.5 < 0.001 18.36 < 0.001 396
877
878
879
880
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881
882 Figure 9 An example of a feature (a lake) denoted by the red polygon, shown in MODIS
883 Level 3 data and Landsat TM data for 6/14/2008 and in Google Earth. The MODIS (in
884 the sinusoidal grid) is shown in both Landsat TM’s UTM projection and MODIS’s
885 sinusoidal projection. The 4 corners of the lake’s center pixel are show in each image as
886 reference, to show that the geo-location of the pixel with respect to the lake polygon does
887 not change regardless of view projection.
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